Java™ Platform
OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP Standard Ed. 8

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

compactl, compact2, compact3
java.util.concurrent

Class ThreadPoolExecutor

java.lang.Object
java.util.concurrent.AbstractExecutorService
java.util.concurrent.ThreadPoolExecutor
All Implemented Interfaces:

Executor, ExecutorService

Direct Known Subclasses:
ScheduledThreadPoolExecutor

public class ThreadPoolExecutor
extends AbstractExecutorService

An ExecutorService that executes each submitted task using one of possibly several pooled
threads, normally configured using Executors factory methods.

Thread pools address two different problems: they usually provide improved performance)when
executing large numbers of asynchronous tasks, due to reduced per-task invocation overhead, and
they provide a means of bounding and managing the resources, including threads, consumed when
executing a collection of tasks. Each ThreadPoolExecutor also maintains some basic statistics, such
as the number of completed tasks.

To be useful across a wide range of contexts, this class provides many adjustable parameters and
extensibility hooks. However, programmers are urged to use the more convenient Executors factory
methods Executors.newCachedThreadPool() (unbounded thread pool, with automatic thread
reclamation), Executors.newFixedThreadPool(int) (fixed size thread pool) and
Executors.newSingleThreadExecutor() (single background thread), that preconfigure settings for
the most common usage scenarios. Otherwise, use the following guide when manually configuring
and tuning this class:

Core and maximum pool sizes

A ThreadPoolExecutor will automatically adjust the pool size (see getPoolSize())
according to the bounds set by corePoolSize (see getCorePoolSize()) and
maximumPoolSize (see getMaximumPoolSize()). When a new task is submitted in method
execute(Runnable), and fewerithan'corePoolSize threadsiarerrunning;anew thread is
created to handle the request, even if other worker threads are idle. If there are
more than corePoolSize but less than maximumPoolSize threads running, a@aFnewrthread
wWiltibe'created only ifthelqueue isfulls By setting corePoolSize and
maximumPoolSize the same, you create a fixed-size thread pool. By setting
maximumPoolSize to an essentially unbounded value such as Integer.MAX VALUE, you
allow the pool to accommodate an arbitrary number of concurrent tasks. Most
typically, core and maximum pool sizes are set only upon construction, but they fay

alsorberchangedrdynamically using setCorePoolSize(int) and setMaximumPoolSize(int).

On-demand construction

By default, even core threads are initially created and started only when new tasks
arrive, but this can be overridden dynamically using method prestartCoreThread() or
prestartAllCoreThreads(). You probably want to prestart threads if you construct the
pool with a non-empty queue.

file:///Users/wangy325/Documents/java8api/api/overview-summary.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/package-summary.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/class-use/ThreadPoolExecutor.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/package-tree.html
file:///Users/wangy325/Documents/java8api/api/deprecated-list.html
file:///Users/wangy325/Documents/java8api/api/index-files/index-1.html
file:///Users/wangy325/Documents/java8api/api/help-doc.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadLocalRandom.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadPoolExecutor.AbortPolicy.html
file:///Users/wangy325/Documents/java8api/api/index.html?java/util/concurrent/ThreadPoolExecutor.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadPoolExecutor.html
file:///Users/wangy325/Documents/java8api/api/allclasses-noframe.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Object.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/AbstractExecutorService.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/Executor.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ExecutorService.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ScheduledThreadPoolExecutor.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/AbstractExecutorService.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ExecutorService.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/Executors.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/Executors.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/Executors.html%23newCachedThreadPool--
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/Executors.html%23newFixedThreadPool-int-
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/Executors.html%23newSingleThreadExecutor--
Yong Wang

Yong Wang

Yong Wang

Yong Wang

Creating new threads

New threads are created using a ThreadFactory. If not otherwise specified, a
Executors.defaultThreadFactory() is used, that creates threads to all be in the same
ThreadGroup and with the same NORM PRIORITY priority and non-daemon status. By
supplying a different ThreadFactory, you can alter the thread's name, thread group,
priority, daemon status, etc. If a ThreadFactory fails to create a thread when asked
by _returning null from newThread, the executor will continue, but might not be able

=o execute any tasks. Threads should possess the "modifyThread" RUmtimePermission. If

Keep-alive times

If the pool currently has more than corePoolSize threads, excess threads will be
terminated if they have been idle for more than the keepAliveTime (see
getKeepAliveTime(TimeUnit)). This provides a means of reducing resource consumption
when the pool is not being actively used. If the pool becomes more active later, new
threads will be constructed. This parameter can also be changed dynamically using
method setKeepAliveTime(long, TimeUnit). Using a value of Long.MAX VALUE
TimeUnit.NANOSECONDS effectively disables idle threads from ever terminating prior to
Shutdown. By default, the keep-alive policy applies only when there are more than
corePoolSize threads. But method allowCoreThreadTimeOut(boolean) can be GSEdFtorapply
thisrtime=out policy to'core threadstas'well, so long as the keepAliveTime value is

non-zero.

Queuing
Any BlockingQueue may be used to transfer and hold submitted tasks. The use of this
queue interacts with pool sizing:

o If fewerrthan'corePoolSizZé threads are running, the Executor always QFefers

adding a new thread rather than queuing.
o If corePoolSize or more threads are running, the Executor always pFefersiqueuing

a request rather than adding a new thread.
« If a request Cannotlberqueled, anew thread isycreated unless this would exceed
maximumPoolSize, in which case, the task will{berrejected.
There are three general strategies for queuing:

1. DiréctThandoffs) A good default choice for a work queue is a SYnchronousQueue
that hands off tasks to threads without otherwise holding them. Here, an attempt
to queue a task will fail if no threads are immediately available to run it, so
a new thread will be constructed. This policy avoids lockups when handling sets
of requests that might have internal dependencies. Direct handoffs generally
require unbounded maximumPoolSizes to avoid rejection of new submitted tasks.
This in turn admits the possibility of unbounded thread growth when commands
continue to arrive on average faster than they can be processed.

. Unbounded queues: Using an unbounded queue (for example a (EinKedBlocKingQueue
without a predefined capacity) will cause new tasks to wait in the queue when
all corePoolSize threads are busy. Thus, forfmore than'corePoolSize threads wiltl
(And the value of the maximumPoolSize therefore doesn't have
any _effect.) This may be appropriate when each task is completely independent of
others, so tasks cannot affect each others execution; for example, in a web page
server. While this style of queuing can be useful in smoothing out transient
bursts of requests, it admits the possibility of unbounded work queue growth
when commands continue to arrive on average faster than they can be processed.

3. BOUNAEdNGUETES: A bounded queue (for example, an AFFaYBUGEKINGQUEUE) helps
Dbrevent resource exhaustion when used with finite maximumPoolSizes, but can be

more difficult to tune and control. Queue sizes and maximum pool sizes may be
traded off for each other: Using large queues and small pools minimizes CPU
usage, 0S resources, and context-switching overhead, but can lead to
artificially low throughput. If tasks frequently block (for example if they are

file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadFactory.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/Executors.html%23defaultThreadFactory--
file:///Users/wangy325/Documents/java8api/api/java/lang/ThreadGroup.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/TimeUnit.html%23NANOSECONDS
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/BlockingQueue.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/SynchronousQueue.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/LinkedBlockingQueue.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ArrayBlockingQueue.html
Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

I/0 bound), a system may be able to schedule time for more threads than you
otherwise allow. Use of small queues generally requires larger pool sizes, which
keeps CPUs busier but may encounter unacceptable scheduling overhead, which also
decreases throughput.

Rejected tasks

New tasks submitted in method execute(Runnable) will@berFréjéctéd when the Executor
has been_shut down., and also when the Executor uses finite bounds for both maximum
threads and work gueue capacity, and is saturated. In either case, the execute method
invokes the RejectedExecutionHandler.rejectedExecution(Runnable, ThreadPoolExecutor)
method of its RejectedExecutionHandler. Four predefined handler policies are
provided:

1. In thefdefaultdThreadPoolExecutor.AbortPolicy, the handler €hrowsT a runtime
RejectedExecutionExceptiondupon rejection.

2. In ThreadPoolExecutor.CallerRunsPolicy, the thread that invokes execute jfself
runs the task. This provides a simple feedback control mechanism that will slow
down the rate that new tasks are submitted.

3. In ThreadPoolExecutor.DiscardPolicy, a task that cannot be executed is simply
dropped.

4. In ThreadPoolExecutor.DiscardOldestPolicy, if the executor is not shut down, the
task at the head of the work queue is dropped, and then execution is retried
(which can fail again, causing this to be repeated.)

It is possible to define and use other kinds of RejectedExecutionHandler classes.
Doing so requires some care especially when policies are designed to work only under
particular capacity or queuing policies.

Hook methods EEXT R

This class provides protected overridable beforeExecute(Thread, Runnable) and
afterExecute(Runnable)"Throwable)"methods that are called before and after execution
of each task. These can be used to manipulate the execution environment; for example,
reinitializing ThreadLocals, gathering statistics, or adding log entries.
Additionally, method terminated() can be overridden to perform any special processing
that needs to be done once the Executor has fully terminated.

If hook or callback methods throw exceptions, internal worker threads may in turn
fail and abruptly terminate.

Queue maintenance

Method getQueue() allows access to the work queue for purposes of monitoring and
debugging. Use of this method for any other purpose is strongly discouraged. Two

supplied methods, FEMOVE(RUANGHTE) and@PUFGE() are available to assist in storage

reclamation when large numbers of queued tasks become cancelled.

Finalization

A pool that is no longer referenced in a program AND has no remaining threads will be
ShutdownTautomaticallyy If you would like to ensure that unreferenced pools are

reclaimed even if users forget to call shutdown(), then you must arrange that unused
threads eventually die, by setting appropriate keep-alive times, using a lower bound
of zero core threads and/or setting allowCoreThreadTimeOut(boolean).

Extension example. Most extensions of this class override one or more of the protected hook
methods. For example, here is a subclass that adds a simple pause/resume feature:

class PausableThreadPoolExecutor extends ThreadPoolExecutor {
private boolean isPaused;
private ReentrantLock pauseLock = new ReentrantLock();
private Condition unpaused = pauselLock.newCondition();

public PausableThreadPoolExecutor(...) { super(...); }

file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/RejectedExecutionHandler.html%23rejectedExecution-java.lang.Runnable-java.util.concurrent.ThreadPoolExecutor-
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/RejectedExecutionHandler.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadPoolExecutor.AbortPolicy.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/RejectedExecutionException.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadPoolExecutor.CallerRunsPolicy.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadPoolExecutor.DiscardPolicy.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadPoolExecutor.DiscardOldestPolicy.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/RejectedExecutionHandler.html
Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang
自定义扩展

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

Yong Wang

protected void beforeExecute(Thread t, Runnable r) {
super.beforeExecute(t, r);

pauseLock.lock();

try {

while (isPaused) unpaused.await();
} catch (InterruptedException ie) {

t.interrupt();

} finally {

pauseLock.unlock();

}
}

public void pause() {

pauselLock.lock();

try {

isPaused = true;

} finally {

pauseLock.unlock();

}
}

public void resume() {

pauseLock.lock();

try {

isPaused =_false;
unpaused.

} finally {

pauseLock.unlock();

}
}
}

Since:
1.5

Nested Class Summary

Modifier and Type

static class

static class

static class

static class

Class and Description

ThreadPoolExecutor.AbortPolicy

A handler for rejected tasks that throws a
RejectedExecutionException

ThreadPoolExecutor.CallerRunsPolicy

A handler for rejected tasks that runs the rejected task directly in the
calling thread of the execute method, unless the executor has been
shut down, in which case the task is discarded.

ThreadPoolExecutor.DiscardOldestPolicy

A handler for rejected tasks that discards the oldest unhandled
request and then retries execute, unless the executor is shut down, in
which case the task is discarded.

ThreadPoolExecutor.DiscardPolicy
A handler for rejected tasks that silently discards the rejected task.

file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadPoolExecutor.AbortPolicy.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadPoolExecutor.CallerRunsPolicy.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadPoolExecutor.DiscardOldestPolicy.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadPoolExecutor.DiscardPolicy.html
Yong Wang

Yong Wang

Constructor Summary

Constructor and Description

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue)

Creates a new ThreadPoolExecutor with the given initial parameters and default thread
factory and rejected execution handler.

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler)

Creates a new ThreadPoolExecutor with the given initial parameters and default thread
factory.

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory)

Creates a new ThreadPoolExecutor with the given initial parameters and default rejected
execution handler.

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory,
RejectedExecutionHandler handler)

Creates a new ThreadPoolExecutor with the given initial parameters.

Method Summary

_ Instance Methods Concrete Methods

Modifier and Type Method and Description

protected void afterExecute(Runnable r, Throwable t)
Method invoked upon completion of execution of the given Runnable.

void allowCoreThreadTimeOut (boolean value)
Sets the policy governing whether core threads may time out and
terminate if no tasks arrive within the keep-alive time, being replaced
if needed when new tasks arrive.

boolean allowsCoreThreadTimeOut ()
Returns true if this pool allows core threads to time out and terminate
if no tasks arrive within the keepAlive time, being replaced if needed
when new tasks arrive.

boolean awaitTermination(long timeout, TimeUnit unit)

Blocks until all tasks have completed execution after a shutdown
request, or the timeout occurs, or the current thread is interrupted,
whichever happens first.

protected void beforeExecute(Thread t, Runnable r)
Method invoked prior to executing the given Runnable in the given
thread.

void execute(Runnable command)

Executes the given task sometime in the future.

protected void finalize()

file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/TimeUnit.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/BlockingQueue.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Runnable.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/TimeUnit.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/BlockingQueue.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Runnable.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/RejectedExecutionHandler.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/TimeUnit.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/BlockingQueue.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Runnable.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadFactory.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/TimeUnit.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/BlockingQueue.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Runnable.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadFactory.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/RejectedExecutionHandler.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Runnable.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Throwable.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/TimeUnit.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Thread.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Runnable.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Runnable.html
javascript:show(2);
javascript:show(8);

int

long

int

long

int

int

int

BlockingQueue<Runnable>

RejectedExecutionHandler

long

ThreadFactory

boolean

boolean

boolean

int

boolean

void

Invokes shutdown when this executor is no longer referenced and it
has no threads.

getActiveCount()

Returns the approximate number of threads that are actively
executing tasks.

getCompletedTaskCount ()

Returns the approximate total number of tasks that have completed
execution.

getCorePoolSize()
Returns the core number of threads.

getKeepAliveTime(TimeUnit unit)

Returns the thread keep-alive time, which is the amount of time that
threads in excess of the core pool size may remain idle before being
terminated.

getLargestPoolSize()

Returns the largest number of threads that have ever simultaneously
been in the pool.

getMaximumPoolSize()
Returns the maximum allowed number of threads.

getPoolSize()
Returns the current number of threads in the pool.

getQueue()
Returns the task queue used by this executor.

getRejectedExecutionHandler()
Returns the current handler for unexecutable tasks.

getTaskCount()

Returns the approximate total number of tasks that have ever been
scheduled for execution.

getThreadFactory ()
Returns the thread factory used to create new threads.

isShutdown ()
Returns true if this executor has been shut down.

isTerminated()
Returns true if all tasks have completed following shut down.

isTerminating()

Returns true if this executor is in the process of terminating after
shutdown () or shutdownNow() but has not completely terminated.

prestartAllCoreThreads()
Starts all core threads, causing them to idly wait for work.

prestartCoreThread()
Starts a core thread, causing it to idly wait for work.

purge()
Tries to remove from the work queue all Future tasks that have been
cancelled.

file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/TimeUnit.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/BlockingQueue.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Runnable.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/RejectedExecutionHandler.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadFactory.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/Future.html

boolean remove (Runnable task)

Removes this task from the executor's internal queue if it is present,
thus causing it not to be run if it has not already started.

void setCorePoolSize(int corePoolSize)
Sets the core number of threads.

void setKeepAliveTime(long time, TimeUnit unit)
Sets the time limit for which threads may remain idle before being
terminated.

void setMaximumPoolSize(int maximumPoolSize)

Sets the maximum allowed number of threads.

void setRejectedExecutionHandler (RejectedExecutionHandler handler)
Sets a new handler for unexecutable tasks.

void setThreadFactory(ThreadFactory threadFactory)
Sets the thread factory used to create new threads.

void shutdown ()

Initiates an orderly shutdown in which previously submitted tasks are
executed, but no new tasks will be accepted.

List<Runnable> shutdownNow ()

Attempts to stop all actively executing tasks, halts the processing of
waiting tasks, and returns a list of the tasks that were awaiting
execution.

protected void terminated()
Method invoked when the Executor has terminated.

String toString()

Returns a string identifying this pool, as well as its state, including
indications of run state and estimated worker and task counts.

Methods inherited from class java.util.concurrent.AbstractExecutorService
invokeAll, invokeAll, invokeAny, invokeAny, newTaskFor, newTaskFor, submit,
submit, submit

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail
ThreadPoolExecutor

public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue)

Creates a new ThreadPoolExecutor with the given initial parameters and default thread
factory and rejected execution handler. It may be more convenient to use one of the Executors

file:///Users/wangy325/Documents/java8api/api/java/lang/Runnable.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/TimeUnit.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/RejectedExecutionHandler.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/ThreadFactory.html
file:///Users/wangy325/Documents/java8api/api/java/util/List.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Runnable.html
file:///Users/wangy325/Documents/java8api/api/java/lang/String.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/AbstractExecutorService.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/AbstractExecutorService.html%23invokeAll-java.util.Collection-
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/AbstractExecutorService.html%23invokeAll-java.util.Collection-long-java.util.concurrent.TimeUnit-
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/AbstractExecutorService.html%23invokeAny-java.util.Collection-
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/AbstractExecutorService.html%23invokeAny-java.util.Collection-long-java.util.concurrent.TimeUnit-
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/AbstractExecutorService.html%23newTaskFor-java.util.concurrent.Callable-
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/AbstractExecutorService.html%23newTaskFor-java.lang.Runnable-T-
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/AbstractExecutorService.html%23submit-java.util.concurrent.Callable-
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/AbstractExecutorService.html%23submit-java.lang.Runnable-
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/AbstractExecutorService.html%23submit-java.lang.Runnable-T-
file:///Users/wangy325/Documents/java8api/api/java/lang/Object.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Object.html%23clone--
file:///Users/wangy325/Documents/java8api/api/java/lang/Object.html%23equals-java.lang.Object-
file:///Users/wangy325/Documents/java8api/api/java/lang/Object.html%23getClass--
file:///Users/wangy325/Documents/java8api/api/java/lang/Object.html%23hashCode--
file:///Users/wangy325/Documents/java8api/api/java/lang/Object.html%23notify--
file:///Users/wangy325/Documents/java8api/api/java/lang/Object.html%23notifyAll--
file:///Users/wangy325/Documents/java8api/api/java/lang/Object.html%23wait--
file:///Users/wangy325/Documents/java8api/api/java/lang/Object.html%23wait-long-
file:///Users/wangy325/Documents/java8api/api/java/lang/Object.html%23wait-long-int-
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/TimeUnit.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/BlockingQueue.html
file:///Users/wangy325/Documents/java8api/api/java/lang/Runnable.html
file:///Users/wangy325/Documents/java8api/api/java/util/concurrent/Executors.html

